PRIOR

Dmitry Varentsov GSI, Darmstadt

HEPM-2010

Proton Microscope for FAIR

High Energy Proton Microscopy at FAIR

SIS-100

SIS-18

from S

Challenging requirements for density measurements in dynamic HEDP experiments:

- up to ~20 g/cm² (Fe, Pb, Au, etc.)
- $\leq 10 \ \mu m$ spatial resolution
- 10 ns time resolution (multi-frame)
- sub-percent density resolution

GeV protons:

- large penetrating depth (high ρx)
- good detection efficiency (S/N)
- imaging, aberrations correction by magnets
- high spatial resolution (microscopy)
- high density resolution and dynamic range
- multi-frame capability for fast dynamic events

At FAIR: a dedicated beam line from SIS-18 for radiography 4.5 GeV, 5 · 10¹² protons

PRIOR project will accomplish two main tasks:

 FAIR proton radiography system which a core FAIR installation will be designed, constructed and commissioned in full-scale dynamic experiments with 4.5 GeV proton beam

 prior to FAIR using the same SIS-18 proton beam, a worldwide unique radiographic facility may become operational at GSI that would provide a capability for unparalleled high-precision experiments with great discovery potential at the leading edges of plasma physics, high energy density physics, biophysics, and materials research

PRIOR – Proton Microscope at Extremes

Technical specifications and resolution scalings

Spatial resolution scalings with proton energy:

PRIOR technical specifications (for FAIR experiments):

proton energy:	4.5 GeV
spatial resolution:	≤10 µm
temporal resolution:	10 – 20 ns
multi-framing capability:	$1 - 4$ frames within 1 μ s
target characteristics:	up to 20 g/cm ²
areal density reconstruction:	sub-percent level
field of view:	10 – 15 mm
stand-off distance:	1 – 1.5 m
proton illumination spot size:	3 – 15 mm
total length after object plane:	less than 15 m
 using permanent magnets or/ar 	nd existing electromagnets

Magnetic lens design: thin lens approximation

$$\begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} = \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{-1}{df+f} & 1 \end{pmatrix} \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{k}{df+f} & 1 \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{-k}{df+f} & 1 \end{pmatrix} \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{1}{df+f} & 1 \end{pmatrix} \begin{pmatrix} 1 & l \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -m & 0 \\ M_{21} & \frac{-1}{m} \end{pmatrix}$$

Total length:

$$x = z + 2 \cdot s + b + l$$

Quad focal length:

Last Quad to detector:

Distance 2nd to 3rd Quad:

Chromatic length complicated function of lens spaces:

Chromatic blur: (characterize spatial resolution)

$$\begin{split} f &= \sqrt{\frac{k^2 m s^2}{km - m + k - 1} - \frac{k^2 s^2}{km - m + k - 1} + \frac{2k^2 lms}{km - m + k - 1} - \frac{2k lms}{km - m + k - 1}}}{km - m + k - 1}} \\ z &= \frac{(km - k) s + (k - 1) lm}{k - 1} \\ \text{d:} \ b &= \frac{(km - k) s^2 + (2k - 2) lms}{(k^2 - k) ms + (k^2 - 2k + 1) lm}}{M_{126} &= \frac{-4bk^2 ls^2 z}{f^4} + \frac{3bk^2 s^2 z}{f^3} + \frac{4ls z}{f^2} + \frac{2bk^2 sz}{f^2} - \frac{2sz}{f} + \frac{2bk^2 lz}{f^2} - \frac{4bk lz}{f^2} + \frac{2blz}{f^2} + \frac{bkz}{f} - \frac{bk}{f}}{M_{346} &= \frac{-4bk^2 ls^2 z}{f^4} - \frac{3bk^2 s^2 z}{f^3} + \frac{4ls z}{f^2} + \frac{2bk^2 sz}{f^2} + \frac{2bk^2 sz}{f^2} + \frac{2bk^2 lz}{f^2} - \frac{4bk lz}{f^2} + \frac{2blz}{f^2} - \frac{bkz}{f} + \frac{bk}{f}}{k^2 + \frac{3bk^2 ls^2}{f^3} + \frac{3bk^2 s^2 z}{f^2} + \frac{2bk^2 ls}{f^2} - \frac{2ls}{f} + \frac{2bk^2 sz}{f^2} - \frac{4bk lz}{f^2} + \frac{2blz}{f^2} - \frac{bkz}{f} + \frac{bk}{f}}{k^2 + \frac{3bk^2 ls^2}{f^3} + \frac{2bk^2 s^2}{f^2} + \frac{2bk^2 ls}{f^2} - \frac{2ls}{f} + \frac{bk}{f}}{k^2 - \frac{bk}{f^2}} - \frac{4bk lz}{f^2} + \frac{2blz}{f^2} - \frac{bkz}{f} + \frac{bk}{f}}{k^2 + \frac{3bk^2 ls^2}{f^2} + \frac{2bk^2 sz}{f^2} - \frac{2ls}{f} + \frac{bk}{f}}{k^2 - \frac{bk}{f}} - \frac{bl}{f}} \\ & x_0 - \frac{x_i}{M_{11}} = \frac{M_{126} \theta_A \delta}{M_{11}}; y_0 - \frac{y_i}{M_{33}} = \frac{M_{346} \theta_A \delta}{M_{33}} & \text{- for properly matched beam} \\ \end{split}$$

Magnetic lens design: thin lens approximation

Normalized chromatic length vs magnification (Fixed total length x=10 m and pole tip field B_t =1.73 T)

Normalized chromatic length and magnification vs pole tip field B_t (Fixed total length x=10 m)

anti-collimator can also be used to enhance accuracy for thin objects

PRIOR magnetic lens design – 15 mm PMQ aperture

Parameter	Value
Proton energy	4.5 GeV
PMQ inner aperture, 2 · R _i	15 mm
PMQ outer aperture, 2 · R _o	79 mm
REPM remanent field	1.16 T
Field gradient	238 T/m
"Short" quadrupole length	110 mm
"Long" quadrupole length	220 mm
L1 (object to first quad)	1.0 m
L ₂ (first to second)	0.202 m
L ₃ (second to third)	0.346 m
L4 (last to image)	8.25 m
Total length	10.000 m

Parameter	Value
Magnification	6.12
Spatial resolution	6 – 7 µm
Horizontal chromatic length, C _x	2.74 m
Vertical chromatic length, Cy	2.40 m
Angular acceptance	5 mrad
Horizontal matching correlation, M _x	-0.42 mrad/mm
Vertical matching correlation, My	-0.53 mrad/mm

PRIOR magnetic lens design – 30 mm PMQ aperture

Parameter	Value
Proton energy	4.5 GeV
PMQ inner aperture, 2 · R _i	30 mm
PMQ outer aperture, 2 · R _o	100 mm
REPM remanent field	1.16 T
Field gradient	115 T/m
"Short" quadrupole length	165 mm
"Long" quadrupole length	330 mm
L1 (object to first quad)	1.3 m
L ₂ (first to second)	0.307 m
L ₃ (second to third)	0.515 m
L4 (last to image)	7.576 m
Total length	10.000 m

Parameter	Value
Magnification	4.1
Spatial resolution	8 – 10 µm
Horizontal chromatic length, C _x	3.99 m
Vertical chromatic length, Cy	3.41 m
Angular acceptance	5 mrad
Horizontal matching correlation, M _x	-0.45 mrad/mm
Vertical matching correlation, My	-0.55 mrad/mm

Permanent Magnetic Quadrupoles (PMQ)

High-gradient (Halbach) split-pole (LANL)

Quasi-Sheet Multipole (ITEP)

ITEP microscope

PMQ parameter	Value					
Inner aperture, 2 · R _i	15 mm					
Outer dimensions, 2 · Ro x L	79 x 100 mm					
Internal ring magnetization	1.16 T					
External ring magnetization	1.19 T					
Pole tip field	1.7 T					
Field non-linearity	< 0.75 %					
Field gradient	238 T/m					
Integrated field	23.8 T					

- field gradients up to 240 T/m
- 0.75% or better field linearity
- design and measured PMQ parameters agrees to measurement accuracy
- REPM: Sm-Co vs Nd-Fe-B
- off-line measurements of the PRIOR 16-sector high gradient split-pole PMQ prototypes have been already started at ITEP

PRIOR setup features

flexible design: can be optimized for a particular experiment:

- proton energy can be reduced
- standoff can be changed
- magnification can be increased
- SIS-18 electron cooler: both transverse (⇒ density resolution) and longitudinal (⇒ spatial resolution) emittances of the beam can be reduced by an order of magnitude or more

Fielding at GSI – a minor reconstruction of the HHT cave

a compact system but long drift is needed for the microscope

Radiation safety – preliminary simulations

- 4.5 GeV protons
 5 · 10¹⁰ / pulse, 10⁷ / s
- beam dump: 150 cm Fe, 350 cm concrete

• < 0.5 µSv/h

PRIOR cost estimates

Setup costs (design, production, installation):

Item	Cost, k€
PMQ	40 - 80
Mechanics, motion, alignment	50
Detectors (LSO, optics)	30
Stand, vacuum, mounting	20
Total:	140 – 180

Infrastructure costs (preparing the area):

Item	Cost, k€
HHT area reconstruction (concrete wall / roof, beam dump)	30
Moving three electric / safety distributor boxes from HHT	100 (?)

Time schedule and milestones for PRIOR project

2009		9		20	010		2011				2012				2013			
	ion m	n-optical design and nagnet prototyping																
					engin of t	complet eering the sys	te design tem											
			ordering & production of PMQ and other components															
									asser @(nbling GSI								
									off-lin ai align	ne test nd ment								
	1									commi star	nmissioning with static objects							
											comm dyna	issioni amic ol	ng with bjects					
														experi	dynami ments o matter	c on HED		
	•	1 st H	EPM	work	kshop	o at C	SI	3111	13(1))	EK SIG	Q3	2009					111	
	•	2 nd ⊦	IEPM	wor	ksho	p at I	PCP			Q3	2010)						
	•	ordering production of main components										2010						
	•	subr	nitting	g first	t bea	m tin	ne ap	plica		Q2	2011							
	•	asse	mblin	g an	d off-	-line	meas	urem	ients		Q4	2011						
	•	com	missio	oning	g with	n stat	ic ob	jects			Q1	2012	2					
	0	com	missio	oninc	y with	n dyn	amic	obje	Q3	2012	2							

Summary and outlook

Technical Design Report

Micrographia, Robert Hooke, 1664

May 2009

Scientific Challenges That Can Be Addressed by High Energy Proton Microscopy

White Paper