800 MeV Proton Radiography

Frank Merrill, LANL and the pRad collaboration

pRad Team

NSTec

Alfred Meidinger, Josh Tybo, Doug Lewis

DE-3

Joe Bainbridge, Robert Lopez, Mark Marr-Lyon, Paul Rightley

HX-4

Wendy McNeil

LANSCE-NS

Leo Bittecker

P-23

Nick King, Kris Kwiatkowski, Paul Nedrow, Gary Grim

P-25

Deborah Clark, Camilo Espinoza, Gary Hogan, Brian Hollander, Julian Lopez, Fesseha Mariam, Frank Merrill, Christopher Morris, Matthew Murray, Alexander Saunders, Cynthia Schwartz, Terry N. Thompson, Dale Tupa, Eduardo Campos

S-7

Rodger Liljestrand

LANSCE Experimental Areas

- Lujan Center
 - National security research
 - Materials, bio-science, and nuclear physics
 - National user facility

WNR

- National security research
- Nuclear Physics
- Neutron Irradiation
- Proton Radiography
 - National security research
 - Dynamic Materials science,
 - Hydrodynamics
- Isotope Production Facility
 Medical radioisotopes

800 MeV pRad Facility at LANSCE

Temporal Resolution

Resolution of 12" Lens

Bare resolution (rms)
Station 1: 178 μm
Station 2: 280 μm

X3 Magnifier

X3 Magnifier

2.5 lp/mm

- 4 inch lens
- <u>Station 1: 65 μm</u>
- Gaussian blur function.
- 42 mm field of view

os Alamos

X7 Magnifier

- 1 inch lens
- Station 1: 30 μm
- Gaussian blur function.
- 17 mm field of view

8

Los Alamos

Powder Gun Driven Equation Of State Measurements

Copper 1.4 km/s

1.4 km/s

Powder Gun Al/Cu Equation Of State

TABLE I. Summary of the experiments with the uncertainties for each quantity shown in parentheses.

Experiment	Impactor/ sample	Impactor velocity (mm/µs)	Peak stress (GPa)	Initial density (g/cm ³)	Calculated density (g/cm ³)	Measured density (g/cm ³)	Agreement
1	Al 6061-T6	1.452	12.27	2.710	3.067	3.070	0.1%
		(0.012)	(0.11)	(0.003)	(0.005)	(0.025)	
2	Al 6061-T6	1.422	11.98	2.710	3.060	3.056	0.1%
		(0.002)	(0.03)	(0.003)	(0.004)	(0.020)	
3	OFHC Cu	1.30	28.59	8.928	10.30	10.28	0.2%
		(0.04)	(0.91)	(0.003)	(0.05)	(0.08)	
4	OFHC Cu	1.249	27.16	8.928	10.241	10.28	0.4%
		(0.002)	(0.06)	(0.003)	(0.006)	(0.08)	

Solid-Solid Phase Transitions in Iron

pRad has been used to study the failure of materials driven by point detonated high explosives

A comparison of spall for different materials

- Experiments were aimed at extending VISAR measurements below the leading spall layer.
- Proton radiographs reveal that the deepest damage layers are not well defined.
- Multiple pRad experiments show that damage formation deep within the metal is "statistical" in nature and dependent on metal.

pRad has been used to study the failure of materials driven by point detonated high explosives

15.7µs 12% open

17.8µs 22% open

20.0µs 29% open

22.1µs 40% open

- Experiments were aimed at extending VISAR measurements below the leading spall layer.
- Proton radiographs reveal that the deepest damage layers are not well defined.
- Multiple pRad experiments show that damage formation deep within the metal is "statistical" in nature and dependent on metal.

Material Strength Experiments

^{*}D.L.Preston, et al. J.Appl. Phys. **93**, 211 (2003). ^{**} D. J. Steinberg, et al. J.Appl. Phys. **61**, 1816 (1987).

Rictmyer-Meshkov Instability Growth in Gasses

Rictmyer-Meshkov Instability Growth in Gasses

Static Objects: Surrogate Nuclear Fuel Rods

Halfnium Oxide surrogate fuel rod.

Filtered Back Projection

Filtered Back Projection: Defects in Pellet #4, Slices 78 to 93

Fainter 250 μ m long by ~150 to 200 μ m diameter inclusions are shown in the circles

Summary

800 MeV Proton Radiography

- Three imaging lens systems
 - $-\,180~\mu m$ with 120 mm field of view
 - 65 $\,\mu m$ with 42 mm field of view
 - 30 $\,\mu m$ with 17 mm field of view
- 1-50 g/cm² object thickness.
- ~40 images, 100 ns exposure over < 1 ms

Blade Motion at 27K and 55K rpm

Turbo pump at 1.46 GeV/c and 7.5 GeV/c

Radiograph

Areal density

Volume density

Los Alamos

٢

Sensitivity with 800 MeV Protons

Areal density contours of constant transmission as a function of atomic number.

10% transmission is near the lower limit of reasonable transmission.

Perform experiments less than ~50 g/cm² with 800 MeV proton Radiography

Dynamic Range of 800 MeV Proton Radigraphy

• 800 MeV proton radiography ranges from ~1 g/cm² up to 50 g/cm² $_{21}$ /

os Alamos

NISA